Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.

Identifieur interne : 000448 ( Main/Exploration ); précédent : 000447; suivant : 000449

Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.

Auteurs : Huabo Wang ; Jie Lu ; Sucheta Kulkarni ; Weiqi Zhang ; Joanna E. Gorka ; Jordan A. Mandel ; Eric S. Goetzman [États-Unis] ; Edward V. Prochownik [États-Unis]

Source :

RBID : pubmed:30755479

Descripteurs français

English descriptors

Abstract

Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.

DOI: 10.1074/jbc.RA118.005200
PubMed: 30755479
PubMed Central: PMC6462518


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.</title>
<author>
<name sortKey="Wang, Huabo" sort="Wang, Huabo" uniqKey="Wang H" first="Huabo" last="Wang">Huabo Wang</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jie" sort="Lu, Jie" uniqKey="Lu J" first="Jie" last="Lu">Jie Lu</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kulkarni, Sucheta" sort="Kulkarni, Sucheta" uniqKey="Kulkarni S" first="Sucheta" last="Kulkarni">Sucheta Kulkarni</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Weiqi" sort="Zhang, Weiqi" uniqKey="Zhang W" first="Weiqi" last="Zhang">Weiqi Zhang</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gorka, Joanna E" sort="Gorka, Joanna E" uniqKey="Gorka J" first="Joanna E" last="Gorka">Joanna E. Gorka</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mandel, Jordan A" sort="Mandel, Jordan A" uniqKey="Mandel J" first="Jordan A" last="Mandel">Jordan A. Mandel</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Goetzman, Eric S" sort="Goetzman, Eric S" uniqKey="Goetzman E" first="Eric S" last="Goetzman">Eric S. Goetzman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Prochownik, Edward V" sort="Prochownik, Edward V" uniqKey="Prochownik E" first="Edward V" last="Prochownik">Edward V. Prochownik</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Section of Hematology/Oncology and procev@chp.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation>
<nlm:affiliation>the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>the The Hillman Cancer Center of UPMC, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30755479</idno>
<idno type="pmid">30755479</idno>
<idno type="doi">10.1074/jbc.RA118.005200</idno>
<idno type="pmc">PMC6462518</idno>
<idno type="wicri:Area/Main/Corpus">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000558</idno>
<idno type="wicri:Area/Main/Curation">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000558</idno>
<idno type="wicri:Area/Main/Exploration">000558</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.</title>
<author>
<name sortKey="Wang, Huabo" sort="Wang, Huabo" uniqKey="Wang H" first="Huabo" last="Wang">Huabo Wang</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lu, Jie" sort="Lu, Jie" uniqKey="Lu J" first="Jie" last="Lu">Jie Lu</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Kulkarni, Sucheta" sort="Kulkarni, Sucheta" uniqKey="Kulkarni S" first="Sucheta" last="Kulkarni">Sucheta Kulkarni</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Weiqi" sort="Zhang, Weiqi" uniqKey="Zhang W" first="Weiqi" last="Zhang">Weiqi Zhang</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gorka, Joanna E" sort="Gorka, Joanna E" uniqKey="Gorka J" first="Joanna E" last="Gorka">Joanna E. Gorka</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Mandel, Jordan A" sort="Mandel, Jordan A" uniqKey="Mandel J" first="Jordan A" last="Mandel">Jordan A. Mandel</name>
<affiliation>
<nlm:affiliation>From the Section of Hematology/Oncology and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Section of Hematology/Oncology and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Goetzman, Eric S" sort="Goetzman, Eric S" uniqKey="Goetzman E" first="Eric S" last="Goetzman">Eric S. Goetzman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Prochownik, Edward V" sort="Prochownik, Edward V" uniqKey="Prochownik E" first="Edward V" last="Prochownik">Edward V. Prochownik</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Section of Hematology/Oncology and procev@chp.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation>
<nlm:affiliation>the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>the The Hillman Cancer Center of UPMC, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Citric Acid Cycle (MeSH)</term>
<term>Fibroblasts (metabolism)</term>
<term>Fibroblasts (pathology)</term>
<term>Humans (MeSH)</term>
<term>Membrane Potential, Mitochondrial (MeSH)</term>
<term>Oxygen Consumption (MeSH)</term>
<term>Pyruvate Dehydrogenase Complex (genetics)</term>
<term>Pyruvate Dehydrogenase Complex (metabolism)</term>
<term>Rats (MeSH)</term>
<term>Rats, Mutant Strains (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Complexe du pyruvate déshydrogénase (génétique)</term>
<term>Complexe du pyruvate déshydrogénase (métabolisme)</term>
<term>Consommation d'oxygène (MeSH)</term>
<term>Cycle citrique (MeSH)</term>
<term>Fibroblastes (anatomopathologie)</term>
<term>Fibroblastes (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Potentiel de membrane mitochondriale (MeSH)</term>
<term>Prolifération cellulaire (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Souches mutantes de rat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Pyruvate Dehydrogenase Complex</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Fibroblastes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe du pyruvate déshydrogénase</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fibroblasts</term>
<term>Pyruvate Dehydrogenase Complex</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe du pyruvate déshydrogénase</term>
<term>Fibroblastes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Fibroblasts</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Cell Proliferation</term>
<term>Citric Acid Cycle</term>
<term>Humans</term>
<term>Membrane Potential, Mitochondrial</term>
<term>Oxygen Consumption</term>
<term>Rats</term>
<term>Rats, Mutant Strains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Consommation d'oxygène</term>
<term>Cycle citrique</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Potentiel de membrane mitochondriale</term>
<term>Prolifération cellulaire</term>
<term>Rats</term>
<term>Souches mutantes de rat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30755479</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>294</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2019</Year>
<Month>04</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.</ArticleTitle>
<Pagination>
<MedlinePgn>5466-5486</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.RA118.005200</ELocationID>
<Abstract>
<AbstractText>Eukaryotic cell metabolism consists of processes that generate available energy, such as glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (Oxphos), and those that consume it, including macromolecular synthesis, the maintenance of ionic gradients, and cellular detoxification. By converting pyruvate to acetyl-CoA (AcCoA), the pyruvate dehydrogenase (PDH) complex (PDC) links glycolysis and the TCA cycle. Surprisingly, disrupting the connection between glycolysis and the TCA cycle by inactivation of PDC has only minor effects on cell replication. However, the molecular basis for this metabolic re-equilibration is unclear. We report here that CRISPR/Cas9-generated PDH-knockout (PDH-KO) rat fibroblasts reprogrammed their metabolism and their response to short-term c-Myc (Myc) oncoprotein overexpression. PDH-KO cells replicated normally but produced surprisingly little lactate. They also exhibited higher rates of glycolysis and Oxphos. In addition, PDH-KO cells showed altered cytoplasmic and mitochondrial pH, redox states, and mitochondrial membrane potential (ΔΨM). Conditionally activated Myc expression affected some of these parameters in a PDH-dependent manner. PDH-KO cells had increased oxygen consumption rates in response to glutamate, but not to malate, and were depleted in all TCA cycle substrates between α-ketoglutarate and malate despite high rates of glutaminolysis, as determined by flux studies with isotopically labeled glutamine. Malate and pyruvate were diverted to produce aspartate, thereby potentially explaining the failure to accumulate lactate. We conclude that PDH-KO cells maintain proliferative capacity by utilizing glutamine to supply high rates of AcCoA-independent flux through the bottom portion of the TCA cycle while accumulating pyruvate and aspartate that rescue their redox defects.</AbstractText>
<CopyrightInformation>© 2019 Wang et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Huabo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kulkarni</LastName>
<ForeName>Sucheta</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Weiqi</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gorka</LastName>
<ForeName>Joanna E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mandel</LastName>
<ForeName>Jordan A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Goetzman</LastName>
<ForeName>Eric S</ForeName>
<Initials>ES</Initials>
<AffiliationInfo>
<Affiliation>Division of Medical Genetics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania 15224.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Prochownik</LastName>
<ForeName>Edward V</ForeName>
<Initials>EV</Initials>
<AffiliationInfo>
<Affiliation>From the Section of Hematology/Oncology and procev@chp.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, and.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the The Hillman Cancer Center of UPMC, Pittsburgh, Pennsylvania 15232.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA174713</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK090242</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011768">Pyruvate Dehydrogenase Complex</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="N">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="Y">Citric Acid Cycle</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005347" MajorTopicYN="N">Fibroblasts</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053078" MajorTopicYN="Y">Membrane Potential, Mitochondrial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010101" MajorTopicYN="Y">Oxygen Consumption</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011768" MajorTopicYN="N">Pyruvate Dehydrogenase Complex</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011922" MajorTopicYN="N">Rats, Mutant Strains</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Myc (c-Myc)</Keyword>
<Keyword MajorTopicYN="Y">Warburg effect</Keyword>
<Keyword MajorTopicYN="Y">fatty acid oxidation</Keyword>
<Keyword MajorTopicYN="Y">glutaminolysis</Keyword>
<Keyword MajorTopicYN="Y">pyruvate carboxylase (PC)</Keyword>
<Keyword MajorTopicYN="Y">reverse carboxylation</Keyword>
<Keyword MajorTopicYN="Y">tricarboxylic acid cycle (TCA cycle) (Krebs cycle)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30755479</ArticleId>
<ArticleId IdType="pii">RA118.005200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.RA118.005200</ArticleId>
<ArticleId IdType="pmc">PMC6462518</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Feb 27;43(4):2466-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25628363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2000 Aug;7(8):697-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10918443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1993 Sep;92(3):1543-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8376604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Chem Biol. 2016 Apr 21;23(4):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27049668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2011 Aug 11;11(9):671-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21833026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2015 Oct;17(10):1317-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem. 1984;16(2):171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6705969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2013 Jun 13;4:e670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23764851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2015 Mar 1;358(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25528630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Oct 1;9(19):3884-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20948290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Oct 2;284(40):27025-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19636077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1968 Oct;109(5):921-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4235143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1999 May 13;18(19):3004-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10378696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1822(9):1442-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22627108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2014 Sep;147(3):690-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24837480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1977 Nov 15;83(2):321-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">201497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Nov 15;312 ( Pt 1):163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7492307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2005 Dec 1;24(54):8038-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16170382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1995;260:406-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8592463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2016;15(1):72-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26636483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Feb;1847(2):171-181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25449966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Mar 15;65(6):2097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2012 Mar 15;519(2):69-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 24;283(43):29292-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 20;481(7381):380-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Apr;63(7-8):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16505973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Dec 16;291(51):26241-26251</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 31;10(7):e0134049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26230505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Jun 16;292(24):10068-10086</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28432125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2653-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16477035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2018 Feb;9(2):196-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28523433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2016 Jul 14;35(28):3619-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26592449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2018 Jan;18(1):51-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29192214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2012 Mar 20;21(3):297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22439925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2001 Sep-Nov;52(3-5):159-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11798028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2017 May 25;8(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28587062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1969 Jun;3(5):333-337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11947042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2005 Dec;37(12):2478-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16103002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2003 May;284(5):E855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2018 Aug;80:50-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28587975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biomed Eng. 2017 Jun 21;19:163-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Dec 16;399(3):193-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 30;162(3):540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1989 Oct 16;164(1):185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2478126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Handb Exp Pharmacol. 2017;240:439-456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28176043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1989 Jul 6;340(6228):66-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2662015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2010;648:3-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20700702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Nov-Dec;7(11-12):1543-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2004 Jul;25(7):360-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15207503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1849(5):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25038584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2017 Dec;47:57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28445781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 11;280(6):4617-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15536073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Histochem Cytochem. 1997 Oct;45(10):1427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9313804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Nov 15;13(22):5442-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7957110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2004 Feb;53 Suppl 1:S110-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14749275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 May;9(5):1031-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Dec 13;414(6865):813-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 24;283(43):29126-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18708636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2014 Feb 03;369(1638):20130099</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24493747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Apr 15;16(8):763-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22146055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Jul 3;158(1):84-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24995980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):397-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Sep;1850(9):1905-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25964069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2005 Sep 30;64(3):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16182371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 24;108(21):8674-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21555572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Oct 26;48(2):158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23102266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Mol Med. 2008 Sep;8(6):446-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18781952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2017 Nov 1;77(21):5795-5807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28883002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2012 Sep;23(9):420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22819213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2008 Aug 1;320(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2017 Aug 10;7:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28848710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2014 Dec 04;5:e1561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25476909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pediatr Res. 1984 Dec;18(12):1242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6522136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Oct 22;163(3):560-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26496603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Nov 20;481(7381):385-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2017 Nov 1;109(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29059435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Mar 10;6:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25805998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Aug 18;12(8):e0182705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28820908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9010-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 25;283(30):20621-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18364355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 30;162(3):471-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2017 Mar;40(2):237-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28101805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2015 Jul;43:11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26277543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E578-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19531645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):13044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:2236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23900562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2001 Sep 1;61(17):6487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11522645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Mar 5;17(3):372-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23473032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 1999 Feb 4;18(5):1177-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e37699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22629444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 1998 Nov 20;854:224-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 May 2;6(9):1024-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17426456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 6;284(10):6520-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19098005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2012 Jan;105(1):34-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Oncol. 2017 Dec 11;7:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29376023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Oct 13;292(41):16804-16809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28842493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2013 Dec 17;4:370</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24381558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 30;162(3):552-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26232225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2010;17(7):672-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2010;47:53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20533900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 13;289(24):16615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Aug 1;413(3):369-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18613815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2001 Nov;74(3):293-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11708858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Feb 22;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26901439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Feb 15;339(6121):819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23287718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2017 Mar 1;22:1493-1522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28199214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 1;286(13):11672-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21224385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell Int. 2015 Feb 15;15:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25705126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2011 Dec 23;35(6):871-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22195744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1969 Sep 30;191(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5823490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2011 May 1;83(9):3406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456517</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gorka, Joanna E" sort="Gorka, Joanna E" uniqKey="Gorka J" first="Joanna E" last="Gorka">Joanna E. Gorka</name>
<name sortKey="Kulkarni, Sucheta" sort="Kulkarni, Sucheta" uniqKey="Kulkarni S" first="Sucheta" last="Kulkarni">Sucheta Kulkarni</name>
<name sortKey="Lu, Jie" sort="Lu, Jie" uniqKey="Lu J" first="Jie" last="Lu">Jie Lu</name>
<name sortKey="Mandel, Jordan A" sort="Mandel, Jordan A" uniqKey="Mandel J" first="Jordan A" last="Mandel">Jordan A. Mandel</name>
<name sortKey="Wang, Huabo" sort="Wang, Huabo" uniqKey="Wang H" first="Huabo" last="Wang">Huabo Wang</name>
<name sortKey="Zhang, Weiqi" sort="Zhang, Weiqi" uniqKey="Zhang W" first="Weiqi" last="Zhang">Weiqi Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Goetzman, Eric S" sort="Goetzman, Eric S" uniqKey="Goetzman E" first="Eric S" last="Goetzman">Eric S. Goetzman</name>
</region>
<name sortKey="Prochownik, Edward V" sort="Prochownik, Edward V" uniqKey="Prochownik E" first="Edward V" last="Prochownik">Edward V. Prochownik</name>
<name sortKey="Prochownik, Edward V" sort="Prochownik, Edward V" uniqKey="Prochownik E" first="Edward V" last="Prochownik">Edward V. Prochownik</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000448 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000448 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30755479
   |texte=   Metabolic and oncogenic adaptations to pyruvate dehydrogenase inactivation in fibroblasts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30755479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020